Search results for "Protoplanetary disk"
showing 10 items of 11 documents
Correlation between the spatial distribution of the circumstellar disks and the massive stars in the open cluster NGC 6611. Compiled catalog and clus…
2006
Context: the observation of young stars with circumstellar disks suggests that the disks are dissipated, starting from the inner region, by the radiation of the central star and eventually by the formation of rocky planetesimals, over a time scale of several million years. It was also shown that strong UV radiation emitted by nearby massive stars can heat a circumstellar disk up to some thousand degrees, inducing the photoevaporation of the gas. This process strongly reduces the dissipation time scale. Aims: we study whether there exists a correlation between the spatial distribution of stars with circumstellar disks and the position of massive stars with spectral class earlier than B5, in …
Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light
2010
NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. We identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 micron. In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. We confirm the membership of…
Chronology of star formation and disk evolution in the Eagle Nebula
2010
Massive SFR are characterized by intense ionizing fluxes, strong stellar winds and supernovae explosions, all of which have important effects on the surrounding media, on the star-formation (SF) process and on the evolution of YSOs and their disks. We present a multiband study of the massive young cluster NGC6611 and M16, to study how OB stars affect the early stellar evolution and the SF. We search for evidence of triggered SF by OB stars in NGC6611 on a large spatial scale (~10 pc) and how the efficiency of disks photoevaporation depends on the central stars mass. We assemble a multiband catalog with photometric data, from B band to 8.0micron, and X-ray data obtained with 2 new and 1 arch…
A large X-ray flare from the Herbig Ae star V892 Tau
2003
We report the XMM-Newton observation of a large X-ray flare from the Herbig Ae star V892 Tau. The apparent low mass companion of V892 Tau, V892 Tau NE, is unresolved by XMM-Newton. Nevertheless there is compelling evidence from combined XMM-Newton and Chandra data that the origin of the flare is the Herbig Ae star V892 Tau. During the flare the X-ray luminosity of V892 Tau increases by a factor of ~15, while the temperature of the plasma increases from kT ~ 1.5 keV to kT ~ 8 keV. From the scaling of the flare event, based on hydrodynamic modeling, we conclude that a 500 G magnetic field is needed in order to confine the plasma. Under the assumptions that a dynamo mechanism is required to ge…
SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM
2011
We generate new standard solar models using newly analyzed nuclear fusion cross sections and present results for helioseismic quantities and solar neutrino fluxes. We discuss the status of the solar abundance problem and investigate whether nonstandard solar models with accretion from the protoplanetary disk might alleviate the problem. We examine a broad range of possibilities, analyzing both metal-enriched and metal-depleted accretion models and exploring three scenarios for the timing of the accretion. Only partial solutions are found: one can bring either the depth of the convective zone or the surface helium abundance into agreement with helioseismic results, but not both simultaneousl…
Protoplanetary Disks, Solar System Minor Bodies and Origin of Life
2001
In the last decade, planetary science researchers have obtained significant advances on the origin and evolution of life on Earth. The increasing resolution and the development of new instruments (as space telescopes and adaptative optics) has provided first detailed images on protoplanetary disks and star formation regions. Moreover, in the last few years, doppler spectroscopic technique has confirmed the presence of extrasolar planets. These evidence shows planetary formation as a continuous and very common process in the Cosmos, indicating that our Solar System is not too special as was suggested in the past.
DR Tauri: Temporal variability of the brightness distribution in the potential planet-forming region
2015
We investigate the variability of the brightness distribution and the changing density structure of the protoplanetary disk around DR Tau, a classical T Tauri star. DR Tau is known for its peculiar variations from the ultraviolet (UV) to the mid-infrared (MIR). Our goal is to constrain the temporal variation of the disk structure based on photometric and MIR interferometric data. We observed DR Tau with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) at three epochs separated by about nine years, two months, respectively. We fit the spectral energy distribution and the MIR visibilities with radiative transfer simulations. We are able to r…
GSC 07396-00759 = V4046 Sgr C[D]: A Wide-separation Companion to the Close T Tauri Binary System V4046 Sgr AB
2011
We explore the possibility that GSC 07396-00759 (spectral type M1e) is a widely separated (~2.82', or projected separation ~12,350 AU) companion to the "old" (age ~12 Myr) classical T Tauri binary system V4046 Sgr AB, as suggested by the proximity and similar space motions of the two systems. If the two systems are equidistant and coeval, then GSC 07396--00759, like V4046 Sgr AB, must be a spectroscopic binary with nearly equal-mass components, and V4046 Sgr must be at least ~8 Myr old. Analysis of a serendipitous Chandra X-ray gratings spectrum and light curve as well as XMM-Newton light curves and CCD spectra of GSC 07396-00759 obtained during long exposures targeting V4046 Sgr AB reveals…
X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion
2019
We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks, with spectral types between M0 and M9, and masses between 0.58 and 0.02 Msol. We employed homogeneous spectroscopic data from 300 to 2500 nm, obtained with X-shooter, to derive individual extinction, stellar parameters, and accretion parameters simultaneously. We then examined Balmer lines and forbidden emission lines to probe the physics of the star-disk interaction environment. We de…
The Evolution of Disk Winds from a Combined Study of Optical and Infrared Forbidden Lines
2020
We analyze high-resolution (dv=<10km/s) optical and infrared spectra covering the [OI] 6300 angstrom and [NeII] 12.81 micron lines from a sample of 31 disks in different evolutionary stages. Following work at optical wavelengths, we use Gaussian profiles to fit the [NeII] lines and classify them into HVC (LVC) if the line centroid is more (less) blueshifted than 30 km/s with respect to the stellar radial velocity. Unlike for the [OI] where a HVC is often accompanied by a LVC, all 17 sources with a [NeII] detection have either a HVC or a LVC. [NeII] HVCs are preferentially detected toward high accretors (Macc > 10$^{-8}$ Msun/yr) while LVCs are found in sources with low Macc, low [OI] …